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Topological defects and nonhomogeneous melting of large two-dimensional Coulomb clusters

Minghui Kong, B. Partoens, and F. M. Peeters*
Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium

~Received 26 July 2002; published 27 February 2003!

The configurational and melting properties of large two-dimensional~2D! clusters of charged classical
particles interacting with each other via the Coulomb potential are investigated through the Monte Carlo
simulation technique. The particles are confined by a harmonic potential. For a large number of particles in the
cluster (N.150), the configuration is determined by two competing effects, namely, the fact that in the center
a hexagonal lattice is formed, which is the groundstate for an infinite 2D system, and the confinement that
imposes its circular symmetry on the outer edge. As a result, a hexagonal Wigner lattice is formed in the central
area while at the border of the cluster the particles are arranged in rings. In the transition region defects appear
as dislocations and disclinations at the six corners of the hexagonal-shaped inner domain. Many different
arrangements and types of defects are possible as metastable configurations with a slightly higher energy. The
particle motion is found to be strongly related to the topological structure. Our results clearly show that the
melting of the clusters starts near the geometry induced defects, and that three different melting temperatures
can be defined corresponding to the melting of different regions in the cluster.
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I. INTRODUCTION

Recently, there has been considerable theoretical and
perimental progress in the study of mesoscopic systems
sisting of a finite number of charged particles which are c
fined into an artificial circular symmetric potential. Typic
experimental model systems for the study of this system
electrons on the surface of liquid helium@1#, electrons in
quantum dots@2#, colloidal suspensions@3,4# and in confined
plasma crystals@5#. Colloidal particles dissolved in water@6#
are another example of an experimental system where c
sical particles exhibit Wigner crystallization. Recently, ma
roscopic two-dimensional~2D! Wigner islands consisting o
charged metallic balls above a plane conductor were stud
and the ground state, metastable states, and saddle poin
figurations were found experimentally@7#.

Such a system with a finite number of particles, initia
studied by Thomson as a classical model for the atom@8,9#,
has been extensively studied during the past few years. F
small number of particles~typically N,100), they are ar-
ranged in rings@10–13# and a Mendeleev-type of table wa
constructed in Ref.@11#, which gives the distribution of thos
particles over the different rings. Moreover, the configu
tions of the ground-state, metastable states, and saddle
states were obtained, from which the transition path and
geometric properties of the energy landscape were give
Ref. @14#. The spectral properties of the ground state c
figurations were presented in Ref.@12# and generalized to
screened Coulomb@15,16# and logarithmic@9,16# interpar-
ticle interactions. The excitation of the normal modes of
Coulomb clusters in laboratory complex plasmas were
cently observed@17#.

The melting properties of this system have been stud
experimentally@6,18# and by Monte Carlo~MC! @19,20# and
molecular dynamics@21,22# simulations. In a hard wall con
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fined system with short-range interparticle interaction,
melting behavior was found even more interesting. Reent
melting of 2D colloidal clusters in a hard wall potential wa
obtained in both experimental@6# and theoretical work@21#.

The defect structure in crystals is of paramount imp
tance for the stability and the strength of materials. Topolo
cal defects in Wigner crystals@23,24# and their effect on
particle melting were investigated in Refs.@18,19,22,25#.
Thermal defect mediated melting was proposed as the mi
scopic mechanism for melting in an infinite 2D triangul
Wigner crystal.

In this paper we study topological defects that are indu
by the confinement potential, i.e., which are a result of
finite size of the system. Next we investigate how these
fects influence the melting of the mesoscopic 2D island. T
present paper is organized as follows. In Section II, we
scribe the model system and the numerical approach. Se
is devoted to the structural properties of the topological
fects at zero temperature. In Sec. IV, we discuss the eig
mode spectrum for these large clusters. The discussion on
nonhomogeneous melting is presented in Sec. V. Our con
sions are given in Sec. VI.

II. NUMERICAL APPROACH

The model system was defined in Ref.@11# and the
Hamiltonian for such a system is given by

H5
q2

« (
i . j

N
1

u r̂ i2 r̂ j u
1(

i

N

V~ r̂ i !. ~1!

The confinement potentialV(rW)5 1
2 m* v0

2r 2 is taken to
be circular symmetric and parabolic, wherem* is the
effective mass of the particles,q is the particle charge,v0
is the radial confinement frequency, and« is the dielectric
constant of the medium the particles are moving in.
exhibit the scaling of the system, we introduce the charac
©2003 The American Physical Society08-1
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istic scales in the problem:r 05(2q2/mev0
2)1/3 for the

length, E05(mv0
2q4/2e2)1/3 for the energy, and T0

5(mv0
2q4/2e2)1/3kB

21 for temperature. After the scalin
transformations (r→r /r 0 ,E→E/E0 ,T→T/T0), the Hamil-
tonian can be rewritten in a simple dimensionless form a

H5(
i . j

N
1

u r̂ i2 r̂ j u
1(

i

N

r i
2 , ~2!

which only depends on the number of particlesN. The nu-
merical values for the parametersv0 ,r 0 ,E0 ,T0for some
typical experimental systems were given in Ref.@11#.

The MC simulation technique@26# is relatively simple
and rapidly convergent and it provides a reliable estimat
of the total energy of the system in cases when relativ
small number of Metropolis steps are sufficient. Howev
the accuracy of this method in calculating the explicit sta
is poor for systems with a large number of particles, wh
have significantly more metastable states. To circumvent
problem we employed the Newton optimization techniq
after the standard MC routine. This procedure was outlin
and compared with the standard MC technique in Ref.@12#.
The structure and potential energies of the system atT Þ0
are found by the standard Metropolis algorithm@26#, in
which at some temperature the next simulation state of
system is obtained by a random displacement of one of
particles. We allow the system to approach its equilibriu
state at some temperatureT, after executing 104–(53105)
MC steps. Each MC step is formed by a random displa
ment of all particles. If the new configuration has a sma
energy it is accepted, but if the new energy is larger
configuration is accepted with probabilityd,exp(2DE/T),
whered is a random number between 0 and 1 andDE is the
increment in the energy@19#.

III. TOPOLOGICAL DEFECTS

It is well known that the hexagonal lattice is the mo
energetically favored structure for classical point charges
two-dimensional infinite plane at low temperature@27#. For a
system consisting of a finite number of repelling partic
restricted to 2D, which are held together by a circular h
monic potential, the cluster patterns are determined by
need to balance the tendency to form a triangular lat
against the formation of a compact circular shape. The c
figuration is determined by these two competing effec
namely, circular symmetry and triangular structure~Wigner
lattice!. This competition leads to intrinsic defects in the 2
circular Coulomb cluster, which aregeometry~of the con-
finement potential! induced defects. This ground state is not a
defect-free system. The symmetry breaking is due to
packing of the triangular lattice into a region with a circul
boundary. A hexagonal lattice that is cut by a circle witho
the introduction of any defect has an energyE556.0499E0
that is larger than the ground-state energyE555.9044E0 for
N5291 particles.

In the first part of this paper, we investigate the form a
position of the defects in large clusters. Therefore we m
use of the Voronoi construction@28#. The Voronoi construc-
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tion of a collection of particles consists of a partition
space into cells. Each cell consists of those points that
closer to the given particular particle than to any other p
ticle. Examples of Voronoi constructions are shown in Fig.
where the ground-state configurations forN5291, 300, 400,
and 500 are shown. One can see that there are two kind
defects, i.e., dislocations and disclinations. Disclinations
orientational defects with a fivefold~indicated by –! or sev-
enfold ~indicated by1! coordination number~the number of
sides of the polygon around the particles is nothing else
the coordination number!. A dislocation is a pair of two dis-
clinations consisting of a defect with a fivefold~–! and a
defect with a sevenfold~1! coordination number. In the lat
ter case the ordering at long distances is not disrupted
consequently such a bound pair has a much lower ene
@29#. The total number of fivefoldN2 and sevenfoldN1

disclinations depends on the particular configuration. T
number of disclinations in this system is determined by E
ler’s theorem and can not be changed, so the net topolog
chargeN22N1 is always equal to 6 as was already demo
strated in Refs.@16,30#. The reason is that every – defect ca
bend the lattice clockwise overp/3 from a straight lattice
and thus six – defects can bend a straight line into a cir
Dislocations will appear when it decreases the energy of
system. From Fig. 1 it is apparent that this is more so
larger clusters.

In Refs.@16,22#, the defects in clusters with a logarithm
interparticle interaction were studied. We want to stress t
their way of visualizing the defects is different: neare
neighbors are connected by a line, without making crossin
However, this does not lead to a unique picture: the to
number of fivefold,N2 , and sevenfold,N1 , disclinations
can vary in the same configuration, only the net topologi
chargeN22N1 is always equal to 6.

In these large clusters, the defects are located on a h

FIG. 1. The ground-state configurations forN5291, 300, 400,
500 particles. The Voronoi structure is shown and the defects~i.e.,
disclinations! are indicated by1 for a sevenfold and by - for a
fivefold coordination number.
8-2
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gon, i.e., they form a hexagonal structure. As can be see
Fig. 1, the defects are approximately situated at the six
ners of a hexagon, each corner with a net topological cha
of –1. Notice from Fig. 1 that a single fivefold disclinatio
can appear, but never a single sevenfold disclination. For
large strain energy around the –1 topological charge, so
dipole defects~i.e., dislocations with –1 and11 defects! will
be generated to shield the –1 topological charge. Th
shielding dipole defects do not change the topology of
system. A clearer example is shown in the inset of Fig. 7~b!
for the N5291 ground-state configuration. We consider
the N5291 system as it minimizes the number of defec
The reason is that, for this particle number the configurat
has 42 particles in the outer ring, which is a multiple of t
topological charge. There are three rings at the border w
an equal number (N542) of particles~the 1D Wigner lat-
tice!, the central hexagonal structure~the 2D Wigner lattice!
and the defects indicated by triangles (n) and squares (h)
are situated~i! around the six corners of a hexagon and~ii ! in
the transition region between the outer rings and the cen
hexagon.

It should be noted that the search for the global minim
configuration is a difficult problem for large systems beca
of the existence of a large number of local-minimum co
figurations, with energy very close to the global minimu
Thus one is never absolutely sure to have found the
ground state. Therefore, we investigated the different m
stable states. In an experiment, these metastable states
be reached by thermal excitation if the energy barrier
tween them and the ground state is comparable to or sm
thankBT. The saddle points between these metastable s
were investigated in an earlier paper@14# for N<20. In Fig.
2 the energy and the total number of defects of differ
metastable states are shown forN5300. The results for the

FIG. 2. The energyE/E0 ~a! and the total number of defects~b!
of different metastable states are shown forN5300. Three typical
defect configurations with different energies are shown on the r
side of the figure.
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different metastable configurations are ordered with incre
ing energy. Note from Fig. 2~b! that on average the tota
number of defects increases with energy, but it shows str
local variations. Only an even number of defects are
tained, because the net topological charge is always 6,
the dipole defects~i.e., one dislocation with –1 and11 de-
fects! always appear in pairs. Also the hexagonal position
the defects disappears@see enlargement~1! in Fig. 2# and
more free dislocations are found. These defects move f
the transition region to the border@see enlargement~2! in
Fig. 2# or to the central region@see enlargement~3! in Fig.
2#. For configurations with higher energies, the defects
range themselves in long chains, i.e., dislocation lines.
average the configurations with defects on the border ha
lower energy than those with defects in the center.

We also investigated whether or not it is possible to ha
a configuration with only six fivefold disclinations and n
other defects~for example for theN585 configuration with
24 particles on the outermost ring@30#!. Therefore, we
started our MC procedure with a perfect hexagonal struc
without any defect and then allowed it to relax to its ener
minimum. We did this forN5281 up to 295 particles, be
cause we noted that for these particle numbers the confi
ration has about 42 particles in the outer ring, which is
multiple of 6, i.e., the net topological charge. Only in such
case one can have the situation in which just six fivef
disclinations are present. We found that our result~from N
5281 up to 295 particles! never converges to a configuratio
with only six fivefold disclinations. However, this procedu
indeed favorably relaxes to configurations with 42 partic
on the outer ring, often resulting in a configuration that h
less total number of defects than the corresponding gro
state.

IV. THE EIGENMODE SPECTRUM

The effect of the geometry induced defects on the eig
frequencies~i.e., the eigenmode spectrum! were also inves-
tigated for these large clusters. In this system, it is w
known that there are three eigenfrequencies that are inde
dent ofN @12#: v50,A2, andA6, which correspond to the
rotation of the system as a whole, the center of mass m
and the breathing mode, respectively. The above modes w
recently observed experimentally@17#. The smallest fre-
quency no longer corresponds to intershell rotation as
small clusters@12# but to the excitation of a vortex-antivorte
pair, of which a typical mode is shown in Fig. 3~a!. Slightly
larger excitation energies may consist of multiples of su
pairs @see Fig. 3~b!#. Modes with higher eigenfrequencie
often show a hexagonal structure similar to the ordering
the defects. The motion can be concentrated around@see Fig.
3~c!# or between the defects@see Fig. 3~d!#. The local modes
can be found at the six corners of the hexagon where
defects are exactly situated@see Fig. 3~e!#. The modes in
which the inner particles have larger amplitudes than
outer particles have the largest eigenfrequencies@see Fig.
3~f!#.

The lowest eigenfrequencies of the excitation spectr
corresponding to the ground-state configuration of the s

ht
8-3
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tem is shown in Fig. 4, as a function of the number of p
ticles for N ranging from 281 to 307. The labels in Fig.
denote the total number of defects present in the gro
state. Notice that only an even number of defects are
tained as explained before. On average, configurations wi
large number of defects have a smaller lowest eigen
quency and are thus less stable, and vice versa.

In this 2D lattice, all behaviors of the cluster modes c
be classified as shearlike or compressionlike modes. In o
to characterize the compressional and shear parts of t
eigenmodes, we calculated, respectively, the diverge
¹W •vW and the vorticity (¹W 3vW )z of the velocity field. To cal-
culate the velocity field, we interpolated the displacements
Fig. 3 on a 1003100 grid ~thus neglecting the constan
eigenfrequency!. The divergence and vorticity maps wer
then calculated at every point of this matrix. Notice that pu

FIG. 3. Vector plot of the eigenvectors for the cluster withN
5291 particles for six different values of the mode numberK.

FIG. 4. Excitation spectrum of normal modes as a function
the number of particles in the cluster. The frequency is in units
v85v0/21/2. The numbers in the figure indicate the number of d
fects found in the ground states of the different clusters.
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shear or compressional modes do not exist in the circu
boundary of finite cluster. Figure 5~b! shows the vorticity
and thus displays the shear part of the eigenmode of
3~b!. The two vortex-antivortex pairs are clearly seen. T
divergence map for this eigenmode is practically zero eve
where, as there is no compressional part@Fig. 5~a!#. This is
not the case for the eigenmodes~c! and~d! of Fig. 3. Figures
5~c! and 5~e! show the divergence maps for both eige
modes, in which the compression and rarefaction can
clearly seen. Both cases show no shear part@Figs. 5~d! and
5~f!#. Figures 5~c! and 5~e! ~see also the 3D plots at th
bottom of Fig. 5! exhibit clearly dipole type of compres
sional oscillations between@Fig. 5~c!# and at@Fig. 5~e!# the
defect regions.

V. NONHOMOGENEOUS MELTING

Understanding the microscopic mechanism of melting h
intrigued scientists since the late nineteenth century. Spe
interest has been devoted to 2D melting@31#. Most works
address infinite systems consisting of a single layer. Ho
ever, whether melting of a 2D crystal is a first-order tran
tion and proceeds discontinuously or is a continuous tran
tion in which the crystal first transits into a hexatic pha
retaining quasi-long-range orientational order and then m
into an isotropic fluid is still an open question and a contr
versial issue.

In the present work we consider a finite 2D system whe
we take N5291 for our numerical simulation. Here w
present a calculation of the melting phase diagram by p
forming MC simulations. In Ref.@22# molecular dynamics
was used to investigate the melting of a cluster of partic
interacting through a logarithmic interaction. As compared
our Coulomb interaction, where the geometry induced d

f
f
-

FIG. 5. Gray-scale contour maps of the vorticity (¹W 3vW )z and

the divergence¹W •vW of the velocity field of three different eigen
modes. A corresponding 3D plot is shown for those maps that
hibit a clear structure.
8-4
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fects are situated in the third and fourth outer shells~i.e., the
transition region! and around the six corners of the ‘‘defec
hexagon, in the logarithmic interacting system@22# these de-
fects are mainly situated in the outer two shells. In Ref.@22#,
the number and type of defects were studied as a functio
the noise~i.e., temperature!. Here we will use several differ
ent criteria such as the total energy, the radial depend
mean square displacement, the bond-angular order fa
and the angular square deviation to characterize the me
behavior of the cluster.

There are several different criteria that can be used to
the melting temperature. In order to determine the melt
transition point, we calculated the potential energy of
system as a function of temperature~see Fig. 6!. In the crys-
talline state the potential energy of the system increases
most linearly with temperature, and then after the criti
temperature is reached (T/T050.01 for N5291), it in-
creases more steeply as shown in Fig. 6. This is a signa
of melting and is related to the unbinding of dislocati
pairs. The dotted assurgent line in Fig. 6 indicates the lin
temperature dependence of the potential energy for low t
peratures before melting. In the upper inset~a! of Fig. 6, we
plot DE, which is the difference between the obtained n
merical energy and the linearT behavior. After the melting
point, DE increases superlinearly.

The lower inset~b! of Fig. 6, shows the averaged numb
of defects as a function of temperatureT/T0. The number of
defects were obtained as follows. We considered 40 confi
rations for every temperatureT/T0. After every 500MC
steps, a new configuration was obtained. For all these c
figurations the number of defects were counted. Finally
averaged over the 40 configurations, which is the reason
the number of defects can be noninteger. With increas
temperature, the system generates more and more de
and after the melting point the number of defects grows v
fast. Notice that two clear critical temperatures emerge fr
this figure at the crossing points of the dotted lines, i

FIG. 6. The potential energy (E/E0) of the 2D Coulomb cluster
as a function of temperatureT/T0 for N5291. The insets show
nE5E2Eline ~a! and the number of defects~b! as a function of
temperatureT/T0.
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FIG. 7. ~a! The mean square displacements as a function of
temperatureT/T0 for the three regions defined in the inset of~b!
for N5291 particles. The open symbols are the results for the
relation functionG6 referred to on the right scale, for the inne
hexagonal region. The linear dependence at low temperature is
centuated by the thin straight lines. The dotted curves are guide
the eye.~b! The mean square displacements as a function of
temperatureT/T0 for the small defect-free~open symbols! and de-
fect regions~solid symbols! in the intermediate region as indicate
by the circular areas in the inset. The thin straight lines show
low temperature linear dependence. The inset is the ground-
configuration forN5291. The dots give the position of the pa
ticles. Three regions are found: I~dark gray colored hexagonal area!
is comprised of the defect-free hexagonal lattice, II is a transit
region with the defects~light gray colored area!, and III consists of
the outermost two rings. The11 and21 topological defects are
represented by the open squares and triangles, respectively.~c! The
relative angular intrashell square deviation^ua1

2 & and relative inter-
shell square deviation̂ua2

2 & of the outermost two rings as a functio
of temperature forN5291.
8-5



el
u
ng
fte
th
r

fe
ith
te

th
ti

io

ist
e

le
a-
es

n-
le
hi
s
he
ar
n

r
f

nt

th
on
te
lts
a

e
pe

in
w
e
tw
-

g
fect
the
are

ant
cite
e
for

d

ct-
res

ion

nal
of
s-
ble
ion
ac-

a

that

e
u-

ng
n
elt-

r-

to

all

first
or-

ter-
ra-
ial
si-

KONG, PARTOENS, AND PEETERS PHYSICAL REVIEW E67, 021608 ~2003!
T/T050.01 andT/T050.014.
On the right-hand side of Fig. 7~c! we plot typical particle

trajectories for two temperatures, which show that the m
ing of this system is very complex and nonhomogeneo
The top figure shows the particle trajectories before melti
and the bottom figure shows the particle trajectories a
melting. It clearly indicates that the melting starts around
six corners of the hexagon, which are exactly the defect
gions. With increasing temperature, the particles in the de
region start to move radially and destroy order locally. W
further increase of temperature the total system comple
melts and the order is destroyed.

In order to better describe the spatial dependence of
melting process in our system, we separate the configura
into three regions as shown in the inset of Fig. 7~b!. Region
I ~dark gray colored hexagonal area! is comprised of the
defect-free hexagonal center, region II is a transition reg
with the defects~light gray colored area!, and region III con-
sists of the outermost two rings. For the case ofN5291
particles, region I consists of 91 particles, region II cons
of 116 particles, and region III consists of 84 particles. W
calculate for each region the mean square displacement^uR

2&,
which was introduced in Ref.@11#,

^uR
2&5

1

N (
i 51

N

Š~r i2^r i&!2
‹/a2, ~3!

with a52R/AN the average distance between the partic
Figure 7~a! showŝ uR

2& as a function of the reduced temper
tureT/T0 for the three different regions. At low temperatur
the particles exhibit harmonic oscillations around theirT
50 equilibrium position, and the oscillation amplitude i
creases linearly and slowly with temperature: the partic
are well localized and display still an ordered structure. T
linear dependence is accentuated by the thin straight line
Fig. 7~a!. Here, we already notice that the amplitude of t
local particle thermal vibrations in these different regions
different. The amplitude is largest at the defect region a
lowest in the center of the cluster. Melting occurs when^uR

2&
increases very sharply withT. Because of the finite numbe
of particles one has rather a melting region, instead o
well-defined melting temperature. After the melting poi
the particles exhibit liquidlike behavior. Figure 7~a! exhibits
three different melting temperatures corresponding to
three different regions. First, region II, i.e., the transiti
region containing the defects, starts to melt, then the ou
most two rings melt, and finally the hexagonal region me
Following Ref.@32#, we can define a melting temperature
the point where^uR

2&'0.10, which results in the melting
temperaturesTmelt /T0.0.0115, 0.0125, and 0.0138 for th
defect region, the outer rings, and the center region, res
tively.

In order to investigate the melting in the defect region
further detail, we consider two new small regions as sho
in the inset of Fig. 7~b!. One region is around the defect, th
other does not contain a defect and is situated between
defect regions. ForN5291, each of the two regions con
tains, respectively, eight and seven particles. In Fig. 7~b!, the
02160
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^uR
2& of these two different regions show a different meltin

temperature: the melting clearly starts first around the de
as expected. The particle motion is strongly influenced by
topological defects, i.e., the particles in the defect regions
less well interlocked and have a larger diffusion const
than the undistorted lattice regions, and it is easier to ex
their thermal motions@25#. Notice that for the two separat
regions a much sharper melting behavior is found than
the intermediate region as a whole@see Fig. 7~a!#. The reason
of course is that in Fig. 7~a! one averages over defect an
defect-free regions. The criterion̂uR

2&'0.10 results into
Tmelt /T0.0.0118, and 0.0138 for the defect and the defe
free regions, respectively. These two melting temperatu
are very similar to the melting temperature of the transit
region and the hexagonal region of Fig. 7~a!.

The third independent parameter is the bond-orientatio
correlation function. This quantity determines the type
melting transition and the melting point for an infinite sy
tem. Our finite system is too small in order to have a relia
analysis of the asymptotic decay of the density correlat
function. Therefore, we calculate the bond-angular order f
tor that was originally presented in Ref.@33#, but following
Ref. @19# we modified it into

G65K 1

N (
j 51

N
1

Nnb
exp~ iNnbu j ,n!L . ~4!

This quantity is calculated only for region I, which exhibits
hexagon structure, wherej means theNnb nearest neighbors
of particle i, for the ideal hexagonal latticeNnb56, where
u j ,n is the angle between some fixed axis and the vector
connects thej th particle and its nearestnth neighbor.

For a perfect hexagonal system,G651. In our system, for
N5291, the initial value ofG6 is 0.96, which means that th
structure in region I is almost perfectly hexagonal. Our n
merical results@see open dots in Fig. 7~a!# show thatG6
decreases linearly with increasing temperature. WhenG6 is
around 0.6, it more rapidly drops to zero with increasi
temperature.G6 should be zero for the liquid state. This ca
be compared with the infinite system where a universal m
ing criterion was found in Ref.@19#: melting occurs when the
bond-angle correlation factor becomesGu'0.45, which was
found to be independent of the functional form of the inte
particle interaction. For our system the valueGu'0.45 is
probably not correct because in our finite systemG6 does not
drop to zero atTmelt , but is smeared out aroundTmelt .
Therefore, the midpointG6'0.45/2'0.225 is expected to
describe better the melting temperature. This leads
Tmelt /T0.0.0136, which is similar to the resultTmelt /T0
.0.0138 obtained from the radial displacement criterion.

In contrast to bulk systems, the melting scenario of sm
laterally confined 2D systems was found earlier@11# to be a
two-step process. Upon increasing the temperature, the
intershell rotation becomes possible where orientational
der between adjacent shells is lost while retaining their in
nal order and the shell structure. At even higher tempe
tures, the growth of thermal fluctuations leads to rad
diffusion between the shells, which finally destroys the po
8-6



e
a

re

e

-
ng
1
ef
lt

h
os
de
hi
ce
m
i
t

se

o-
ting
ted
he

is
ter,
ion
and
ner
cts

htly
ly
rly
etry
n be
e-
ec-

-
ee

un-

it
rk
re
s.
Ju

TOPOLOGICAL DEFECTS AND NONHOMOGENEOUS . . . PHYSICAL REVIEW E 67, 021608 ~2003!
tional order. To characterize the relative angular intrash
and the relative angular intershell, we use the functions
defined in Ref.@11#. The relative angular intrashell squa
deviation

^ua1
2 &5

1

NR
(
i 51

NR

@^~w i2w i1!2&2^w i2w i1&
2#/w0

2 ~5!

and the relative angular intershell square deviation

^ua2
2 &5

1

NR
(
i 51

NR

@^~w i2w i2!2&2^w i2w i2&
2#/w0

2 , ~6!

where i 1 indicates the nearest-particle from the same sh
while i 2 refers to the nearest-neighbor shell,w052p/NR ,
where the number in the outermost two ringsNR is the same
and equals 42 for ourN5291 system. Only the two outer
most rings have a clear shell structure. Both two outer ri
are strongly interlocked, which is a consequence of the
Wigner lattice arrangement of the two rings. From the l
inset of Fig. 7~c!, one can see that the inner ring will me
before the outermost ring. We find that the result for^ua1

2 & of
the inner ring is almost the same as^ua2

2 &, which is the
relative angular intershell square deviation. It means t
when the inner ring loses its order, the relative order is l
simultaneously. The outermost ring can still keep its or
and it will melt at even higher temperature. Comparing t
with Fig. 7~a!, we see that the radial and angular displa
ments start to increase rapidly at approximately the sa
temperature. Thus, for large clusters, intershell rotation w
not occur below the melting temperature, but appears at
same temperature when the radial displacements increa
Re

Re

r
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VI. CONCLUSION

The configurational and melting properties of large tw
dimensional clusters of charged classical particles interac
with each other via the Coulomb potential were investiga
through the Monte Carlo simulation technique. For t
ground-state configuration, a hexagonal Wigner lattice
formed in the central area while on the border of the clus
the particles are arranged in rings. In the transition reg
between them, defects appear as groups of dislocations
disclinations at the six corners of the hexagonal-shaped in
domain. Many different arrangements and types of defe
are possible as metastable configurations with a slig
higher energy. The particle motion is found to be strong
related to the local topological structure. Our results clea
show that the melting of the clusters starts near the geom
induced defects, and that three melting temperatures ca
obtained:Tmelt /T0.0.0115, 0.0125, and 0.0138 for the d
fect region, the outer rings and the center region, resp
tively. These values are for theN5291 cluster. Taking a
different value forN does not lead to any qualitative differ
ences, it only influences slightly the values for the thr
melting temperatures.
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