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Topological defects and nonhomogeneous melting of large two-dimensional Coulomb clusters
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The configurational and melting properties of large two-dimensi¢2B) clusters of charged classical
particles interacting with each other via the Coulomb potential are investigated through the Monte Carlo
simulation technique. The particles are confined by a harmonic potential. For a large number of particles in the
cluster N\>150), the configuration is determined by two competing effects, namely, the fact that in the center
a hexagonal lattice is formed, which is the groundstate for an infinite 2D system, and the confinement that
imposes its circular symmetry on the outer edge. As a result, a hexagonal Wigner lattice is formed in the central
area while at the border of the cluster the particles are arranged in rings. In the transition region defects appear
as dislocations and disclinations at the six corners of the hexagonal-shaped inner domain. Many different
arrangements and types of defects are possible as metastable configurations with a slightly higher energy. The
particle motion is found to be strongly related to the topological structure. Our results clearly show that the
melting of the clusters starts near the geometry induced defects, and that three different melting temperatures
can be defined corresponding to the melting of different regions in the cluster.
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[. INTRODUCTION fined system with short-range interparticle interaction, the
melting behavior was found even more interesting. Reentrant
Recently, there has been considerable theoretical and exaelting of 2D colloidal clusters in a hard wall potential was
perimental progress in the study of mesoscopic systems co@btained in both experimentgh] and theoretical work21].
sisting of a finite number of charged particles which are con- The defect structure in crystals is of paramount impor-
fined into an artificial circular symmetric potential. Typical tance for the stability and the strength of materials. Topologi-
experimental model systems for the study of this system aréal defects in Wigner crystalg23,24 and their effect on
electrons on the surface of liquid heliufi], electrons in particle melting were investigated in Refgl8,19,22,2%
quantum dot$2], colloidal suspensioni8,4] and in confined ~Thermal defect mediated melting was proposed as the micro-
plasma crystalg5]. Colloidal particles dissolved in watg$] scopic mechanism for melting in an infinite 2D triangular
are another example of an experimental system where cla¥Vigner crystal.
sical particles exhibit Wigner crystallization. Recently, mac- In this paper we study topological defects that are induced
roscopic two-dimensionaRD) Wigner islands consisting of by the confinement potential, i.e., which are a result of the
charged metallic balls above a plane conductor were studiedinite size of the system. Next we investigate how these de-
and the ground state, metastable states, and saddle point cd@cts influence the melting of the mesoscopic 2D island. The

figurations were found experimentally]. present paper is organized as follows. In Section Il, we de-
Such a system with a finite number of particles, initially scribe the model system and the numerical approach. Sec. Il
studied by Thomson as a classical model for the i, is devoted to the structural properties of the topological de-

has been extensively studied during the past few years. Forfacts at zero temperature. In Sec. 1V, we discuss the eigen-
small number of particlegtypically N<100), they are ar- mode spectrum for these large clusters. The discussion on the
ranged in ringg10—13 and a Mendeleev-type of table was honhomogeneous melting is presented in Sec. V. Our conclu-
constructed in Ref.11], which gives the distribution of those Sions are given in Sec. VI.

particles over the different rings. Moreover, the configura-

tions of the ground—state, meta;table state:;,_ and saddle point Il. NUMERICAL APPROACH

states were obtained, from which the transition path and the

geometric properties of the energy landscape were given in The model system was defined in R¢ill] and the
Ref. [14]. The spectral properties of the ground state conHamiltonian for such a system is given by

figurations were presented in Réfl2] and generalized to

screened Coulompl5,16 and logarithmic[9,16] interpar- q? 1 N

ticle interactions. The excitation of the normal modes of 2D H=— E — +E V(T). (1)
Coulomb clusters in laboratory complex plasmas were re- e 51 =T 5

cently observed17].

The melting properties of this system have been studiedhe confinement potentiaV/(r)=3m* w3r? is taken to
experimentall\{6,18] and by Monte CarlgMC) [19,20 and  be circular symmetric and parabolic, whera* is the
molecular dynamic$21,22 simulations. In a hard wall con- effective mass of the particles, is the particle chargep,

is the radial confinement frequency, aads the dielectric
constant of the medium the particles are moving in. To
*Email address: peeters@uia.ua.ac.be exhibit the scaling of the system, we introduce the character-
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istic scales in the problemry=(2g%mew3)*® for the
length, Eo=(mwjq*/2¢?)® for the energy, andT,
=(mw3q*/2¢?)3%g* for temperature. After the scaling
transformations (—r/rq,E—E/Ey, T—T/Ty), the Hamil-
tonian can be rewritten in a simple dimensionless form as

N
+2 12, 2)

N

1
: '2>J ri—rt j|
which only depends on the number of particesThe nu-
merical values for the parameteis,,rq,Eq,Tofor some
typical experimental systems were given in Héfl].

The MC simulation techniqug26] is relatively simple
and rapidly convergent and it provides a reliable estimation
of the total energy of the system in cases when relatively
small number of Metropolis steps are sufficient. However,
the accuracy of this method in calculating the explicit states
is poor for systems with a large number of particles, which
have significantly more metastable states. j’o c;ircumvent this Fic. 1. The ground-state configurations &= 291, 300, 400,
problem we employed the Newton optimization techniquesgg particles. The Voronoi structure is shown and the deféets
after the standard MC routine. This procedure was outlinejisclinations are indicated by+ for a sevenfold and by - for a
and compared with the standard MC technique in REf].  fivefold coordination number.

The structure and potential energies of the systef &t0
are found by the standard Metropolis algoritH®6], in , ) ) , »
which at some temperature the next simulation state of thHon ©of a collection of particles consists of a partition of
system is obtained by a random displacement of one of thePace into ceII_s. Each _ceII con5|s_ts of those points that are
particles. We allow the system to approach its equilibriumCloSer to the given particular particle than to any other par-
state at some temperatufe after executing 15-(5x 10°) ticle. Examples of Voronoi constructions are shown in Fig. 1,
MC steps. Each MC step is formed by a random disp|aceWhere the ground-state Configurations for 291, 300, 400,
ment of all particles. If the new configuration has a smallerand 500 are shown. One can see that there are two kinds of
energy it is accepted’ but if the new energy is |arge|' théjefeCtS, i.e., dislocations and disclinations. Disclinations are
Conﬁguration is accepted with probab|||t§l< exp(_AE/T)’ orientational defects with a fivefoldndicated by -)' or sev-

wheres is a random number between 0 and 1 &l is the €nfold(indicated by+) coordination numbefthe number of
increment in the energjl9]. sides of the polygon around the particles is nothing else but

the coordination numbgrA dislocation is a pair of two dis-
clinations consisting of a defect with a fivefold) and a
defect with a sevenfol@+) coordination number. In the lat-

It is well known that the hexagonal lattice is the mostter case the ordering at long distances is not disrupted and
energetically favored structure for classical point charges in @onsequently such a bound pair has a much lower energy
two-dimensional infinite plane at low temperat(i2g]. Fora [29]. The total number of fivefoldN_ and sevenfold\N .
system consisting of a finite number of repelling particlesdisclinations depends on the particular configuration. The
restricted to 2D, which are held together by a circular harnumber of disclinations in this system is determined by Eu-
monic potential, the cluster patterns are determined by th&r’'s theorem and can not be changed, so the net topological
need to balance the tendency to form a triangular latticehargeN_— N, is always equal to 6 as was already demon-
against the formation of a compact circular shape. The corstrated in Refd16,30. The reason is that every — defect can
figuration is determined by these two competing effectsbend the lattice clockwise over/3 from a straight lattice
namely, circular symmetry and triangular struct@véigner  and thus six — defects can bend a straight line into a circle.
lattice). This competition leads to intrinsic defects in the 2D Dislocations will appear when it decreases the energy of the
circular Coulomb cluster, which argeometry(of the con-  system. From Fig. 1 it is apparent that this is more so for
finement potentialinduced defectsThis ground state is not a larger clusters.
defect-free system. The symmetry breaking is due to the In Refs.[16,22, the defects in clusters with a logarithmic
packing of the triangular lattice into a region with a circular interparticle interaction were studied. We want to stress that
boundary. A hexagonal lattice that is cut by a circle withouttheir way of visualizing the defects is different: nearest
the introduction of any defect has an enefgy 56.049%, neighbors are connected by a line, without making crossings.
that is larger than the ground-state enekgy 55.9044& for However, this does not lead to a unique picture: the total
N=291 particles. number of fivefold,N_, and sevenfoldN, , disclinations

In the first part of this paper, we investigate the form andcan vary in the same configuration, only the net topological
position of the defects in large clusters. Therefore we makehargeN_—N, is always equal to 6.
use of the Voronoi constructio28]. The Voronoi construc- In these large clusters, the defects are located on a hexa-

Ill. TOPOLOGICAL DEFECTS

021608-2



TOPOLOGICAL DEFECTS AND NONHOMOGENEOS.. . . PHYSICAL REVIEW E 67, 021608 (2003

different metastable configurations are ordered with increas-

S70%80r N=360 ing energy. Note from Fig. (B) that on average the total
5700761 number of defects increases with energy, but it shows strong
S local variations. Only an even number of defects are ob-
g tained, because the net topological charge is always 6, and
B ST.00721 the dipole defectsi.e., one dislocation with —1 an¢t1 de-
@ e fecty always appear in pairs. Also the hexagonal position of
D 7.0068 Proscasseisice the defects disappeafsee enlargementl) in Fig. 2] and
@ FEREEESRE  more free dislocations are found. These defects move from
57.0964 5 ;:,;{;":;: the transition region to the bord¢see enlargemen®) in
S g NS00 ] Eee harees Fig. 2] or to the central regiofisee enlargemen(®) in Fig.
«§ 29 o® ¢ ’“ﬂ? 2]. For configurations with higher energies, the defects ar-
b} = WA”W& k@# range themselves in long chains, i.e., dislocation lines. On
S kvﬁ JEIN Y average the configurations with defects on the border have a
B @ lower energy than those with defects in the center.
E 2 We also investigated whether or not it is possible to have
< 18] (b)- a configuration with only six fivefold disclinations and no
- : : : : other defectgfor example for theN= 85 configuration with

o
S
8
gl
8
8

Trial 24 particles on the outermost ring0]). Therefore, we
started our MC procedure with a perfect hexagonal structure
FIG. 2. The energf/E, (a) and the total number of defedls)  without any defect and then allowed it to relax to its energy
of different metastable states are shown Nor300. Three typical minimum. We did this forN=281 up to 295 particles, be-
defect configurations with different energies are shown on the right3use we noted that for these particle numbers the configu-
side of the figure. ration has about 42 particles in the outer ring, which is a
multiple of 6, i.e., the net topological charge. Only in such a

gon, i.e., they form a hexagonal structure. As can be seen i@a@se one can have the situation in which just six fivefold
Fig. 1, the defects are approximately situated at the six cordisclinations are present. We found that our regiim N
ners of a hexagon, each corner with a net topological charge 281 up to 295 particlgsiever converges to a configuration
of —1. Notice from Fig. 1 that a single fivefold disclination With only six fivefold disclinations. However, this procedure
can appear, but never a single sevenfold disclination. For thideed favorably relaxes to configurations with 42 particles
large strain energy around the —1 topological charge, somen the outer ring, often resulting in a configuration that has
dipole defectgi.e., dislocations with —1 anet 1 defects will less total number of defects than the corresponding ground
be generated to shield the —1 topological charge. Thesgtate.
shielding dipole defects do not change the topology of the
system. A clearer example is shovyn in t_he inset of F(g) 7 IV. THE EIGENMODE SPECTRUM
for the N=291 ground-state configuration. We considered
the N=291 system as it minimizes the number of defects. The effect of the geometry induced defects on the eigen-
The reason is that, for this particle number the configuratiorfrequencieqi.e., the eigenmode spectriiwere also inves-
has 42 particles in the outer ring, which is a multiple of thetigated for these large clusters. In this system, it is well
topological charge. There are three rings at the border wittkknown that there are three eigenfrequencies that are indepen-
an equal numberN=42) of particles(the 1D Wigner lat- dent ofN [12]: w=0,y2, and\/6, which correspond to the
tice), the central hexagonal structuiie 2D Wigner lattice  rotation of the system as a whole, the center of mass mode,
and the defects indicated by triangle& ) and squares({) and the breathing mode, respectively. The above modes were
are situatedi) around the six corners of a hexagon dingin recently observed experimentalpd7]. The smallest fre-
the transition region between the outer rings and the centrajuency no longer corresponds to intershell rotation as in
hexagon. small cluster$12] but to the excitation of a vortex-antivortex

It should be noted that the search for the global minimumpair, of which a typical mode is shown in Fig(&3. Slightly
configuration is a difficult problem for large systems becausdarger excitation energies may consist of multiples of such
of the existence of a large number of local-minimum con-pairs [see Fig. &)]. Modes with higher eigenfrequencies
figurations, with energy very close to the global minimum. often show a hexagonal structure similar to the ordering of
Thus one is never absolutely sure to have found the reahe defects. The motion can be concentrated ar¢see Fig.
ground state. Therefore, we investigated the different meta3(c)] or between the defecfsee Fig. &)]. The local modes
stable states. In an experiment, these metastable states megh be found at the six corners of the hexagon where the
be reached by thermal excitation if the energy barrier bedefects are exactly situatddee Fig. 8)]. The modes in
tween them and the ground state is comparable to or smallavhich the inner particles have larger amplitudes than the
thankgT. The saddle points between these metastable statesiter particles have the largest eigenfrequenfses Fig.
were investigated in an earlier pagé#] for N<20. In Fig.  3(f)].
2 the energy and the total number of defects of different The lowest eigenfrequencies of the excitation spectrum
metastable states are shown fb+=300. The results for the corresponding to the ground-state configuration of the sys-
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FIG. 3. Vector plot of the eigenvectors for the cluster with
=291 particles for six different values of the mode numKer
: - . Vxv
tem is shown in Fig. 4, as a function of the number of par-
ticles for N ranging from 281 to 307. The labels in Fig. 4 [, 5. Gray-scale contour maps of the vorticify X v), and
denote the total number of defects present in the grounﬂ]e divergenc&-ﬁ of the velocity field of three different eigen-

state. Notice that only an even number of defects are Ob,,4es. A corresponding 3D plot is shown for those maps that ex-
tained as explained before. On average, configurations with &pit 4 clear structure.

large number of defects have a smaller lowest eigenfre-

quency and are thus less stable, and vice versa. shear or compressional modes do not exist in the circular
In this 2D lattice, all behaviors of the cluster modes canphoundary of finite cluster. Figure(t shows the vorticity

be classified as shearlike or compressionlike modes. In ordgynd thus displays the shear part of the eigenmode of Fig.

to characterize the compressional and shear parts of thesgy) The two vortex-antivortex pairs are clearly seen. The

eigenmodes, we calculated, respectively, the divergencgivergence map for this eigenmode is practically zero every-

V-v and the vorticity ¥ Xv), of the velocity field. To cal- where, as there is no compressional B&iy. 5a)]. This is

culate the velocity field, we interpolated the displacements ohot the case for the eigenmodge$ and(d) of Fig. 3. Figures

Fig. 3 on a 10100 grid (thus neglecting the constant 5(c) and %e) show the divergence maps for both eigen-

eigenfrequency The divergence and vorticity maps were modes, in which the compression and rarefaction can be

then calculated at every point of this matrix. Notice that pureclearly seen. Both cases show no shear [fgs. 5d) and

5(f)]. Figures %c) and Fe) (see also the 3D plots at the
- g ] bottom of Fig. 5 exhibit clearly dipole type of compres-
[ - N - - T - ] sional oscillations betweelFig. 5(c)] and at[Fig. 5(e)] the
03f - - - - - 3 defect regions.

- T T 1eT - V. NONHOMOGENEOUS MELTING

Understanding the microscopic mechanism of melting has
intrigued scientists since the late nineteenth century. Special
6 interest has been devoted to 2D meltir&i]. Most works
24 address infinite systems consisting of a single layer. How-
18 ] ever, whether melting of a 2D crystal is a first-order transi-
tion and proceeds discontinuously or is a continuous transi-
tion in which the crystal first transits into a hexatic phase
retaining quasi-long-range orientational order and then melts
into an isotropic fluid is still an open question and a contro-

o
o

C W L

Eigenfrequency (o/«')
B
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e
18
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number of defects
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280 285 290 295 300 305
Number of particles (N)

310

versial issue.

In the present work we consider a finite 2D system where
we take N=291 for our numerical simulation. Here we
present a calculation of the melting phase diagram by per-

FIG. 4. Excitation spectrum of normal modes as a function offorming MC simulations. In Ref[22] molecular dynamics

the number of particles in the cluster. The frequency is in units ofvas used to investigate the melting of a cluster of particles
o' =we/2Y2. The numbers in the figure indicate the number of de-interacting through a logarithmic interaction. As compared to
fects found in the ground states of the different clusters. our Coulomb interaction, where the geometry induced de-
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FIG. 6. The potential energye(E,) of the 2D Coulomb cluster
as a function of temperatur€/T, for N=291. The insets show
AE=E—Ej, (@ and the number of defect®) as a function of

temperaturel /T.

fects are situated in the third and fourth outer shglés, the
transition region and around the six corners of the “defect”

hexagon, in the logarithmic interacting systg2®] these de- 0.20 M me——r i
fects are mainly situated in the outer two shells. In R2g], L i ing $7 1 4 i
the number and type of defects were studied as a function o 0.15 010 SANE I S
{
f

the noiseg(i.e., temperatune Here we will use several differ-

ent criteria such as the total energy, the radial dependen ,
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mean square displacement, the bond-angular order facto™ -5 0.10
and the angular square deviation to characterize the meltin \=,’
behavior of the cluster.

There are several different criteria that can be used to finc
the melting temperature. In order to determine the melting
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transition point, we calculated the potential energy of the ] wsﬁiz//

. - 0.00 | sttt _
system as a function of temperatysee Fig. 6. In the crys- L . .
talline state the potential energy of the system increases al 0.0 0.5 - 10 1.5
most linearly with temperature, and then after the critical T(10 To)

temperature is reachedlT{T,=0.01 for N=291), it in-

creases more steeply as shown in Fig. 6. This is a signature . _
of melting and is related to the unbinding of dislocation FIG. 7. (a) The mean square displacements as a function of the

pairs. The dotted assurgent line in Fig. 6 indicates the lineaiemperatureT/T, for the three regions defined in the inset(bf
temperature dependence of the potentia' energy for low ten‘for N=291 partlcles. The open SymbOIS are the results for the cor-
peratures before melting. In the upper ing®tof Fig. 6, we relation functionGg referred to on the right scale, for the inner

plot AE, which is the difference between the obtained nu_hexagonal region. The linear dependence at low temperature is ac-
merical ’energy and the linedr behavior. After the melting centuated by the thin straight lines. The dotted curves are guides to

point, AE increases superlinearly. the eye.(b) The mean square displacements as a function of the

The lower insetb) of Fig. 6, shows the averaged number tempera.lturér”.o for the S".‘a” defect-fre@pen symbollsapd .de'
f defects as a function of temperat(i&T,. The number of fect reglqns(sohd sympol$ in _the |ntermed_|ate region as indicated
0 . 0 | . by the circular areas in the inset. The thin straight lines show the
defects were obtained as follows. We considered 40 config

. Yow temperature linear dependence. The inset is the ground-state
rations for every temperaturg/T,. After every 500MC configuration forN=291. The dots give the position of the par-

steps, a new configuration was obtained. For all these cofjes. Three regions are founddark gray colored hexagonal ayea
figurations the number of defects were counted. Finally wes comprised of the defect-free hexagonal lattice, Il is a transition
averaged over the 40 configurations, which is the reason Whyggion with the defectglight gray colored areaand 1l consists of
the number of defects can be noninteger. With increasinghe outermost two rings. The 1 and —1 topological defects are
temperature, the system generates more and more defeetpresented by the open squares and triangles, respectijelyne
and after the melting point the number of defects grows veryelative angular intrashell square deviatiarf,) and relative inter-
fast. Notice that two clear critical temperatures emerge fronshell square deviatiofuZ,) of the outermost two rings as a function
this figure at the crossing points of the dotted lines, i.e.pf temperature foN=291.
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T/Ty=0.01 andT/T,=0.014. (ud) of these two different regions show a different melting
On the right-hand side of Fig(@) we plot typical particle temperature: the melting clearly starts first around the defect
trajectories for two temperatures, which show that the meltas expected. The particle motion is strongly influenced by the
ing of this system is very complex and nonhomogeneoustopological defects, i.e., the particles in the defect regions are
The top figure shows the particle trajectories before meltingless well interlocked and have a larger diffusion constant
and the bottom figure shows the particle trajectories aftethan the undistorted lattice regions, and it is easier to excite
melting. It clearly indicates that the melting starts around theheir thermal motion$25]. Notice that for the two separate
six corners of the hexagon, which are exactly the defect reregions a much sharper melting behavior is found than for
gions. With increasing temperature, the particles in the defeahe intermediate region as a whtze Fig. 7a)]. The reason
region start to move radially and destroy order locally. Withof course is that in Fig. (& one averages over defect and
further increase of temperature the total system completelgefect-free regions. The criteriofu3)~0.10 results into
melts and the order is destroyed. Tmeit/ To=0.0118, and 0.0138 for the defect and the defect-
In order to better describe the spatial dependence of thgee regions, respectively. These two melting temperatures
melting process in our system, we separate the configuratiogre very similar to the melting temperature of the transition
into three regions as shown in the inset of Fig))7Region  region and the hexagonal region of Figa)?
| (dark gray colored hexagonal ajes comprised of the The third independent parameter is the bond-orientational
defect-free hexagonal center, region Il is a transition regiortorrelation function. This quantity determines the type of
with the defectglight gray colored argaand region Ill con-  melting transition and the melting point for an infinite sys-
sists of the outermost two rings. For the caseNof291  tem. Our finite system is too small in order to have a reliable
particles, region | consists of 91 particles, region Il consistsanalysis of the asymptotic decay of the density correlation
of 116 particles, and region Ill consists of 84 particles. Wefunction. Therefore, we calculate the bond-angular order fac-
calculate for each region the mean square displace(o@ht  tor that was originally presented in R¢83], but following

which was introduced in Refl11], Ref.[19] we modified it into
2 1 . 2 2 1 N 1 .
(Ugy= 5 2 ((ri—(r)a?, ) Ge=|— > ——exp(iNypbj.0) ). (4)
N =1 N =1 Npp

with a=2R//N the average distance between the particlesThis quantity is calculated only for region I, which exhibits a
Figure Ta) shows( uﬁ) as a function of the reduced tempera- hexagon structure, whejemeans theN,, nearest neighbors
ture T/ T, for the three different regions. At low temperatures of particlei, for the ideal hexagonal latticH,,,=6, where
the particles exhibit harmonic oscillations around th&ir 6 , is the angle between some fixed axis and the vector that
=0 equilibrium position, and the oscillation amplitude in- connects thg"" particle and its nearest” neighbor.
creases linearly and slowly with temperature: the particles For a perfect hexagonal syste@®g=1. In our system, for
are well localized and display still an ordered structure. ThisN= 291, the initial value of5¢4 is 0.96, which means that the
linear dependence is accentuated by the thin straight lines istructure in region | is almost perfectly hexagonal. Our nu-
Fig. 7(a). Here, we already notice that the amplitude of themerical resultssee open dots in Fig.(@] show thatGg
local particle thermal vibrations in these different regions aredecreases linearly with increasing temperature. \WBgns
different. The amplitude is largest at the defect region ancaround 0.6, it more rapidly drops to zero with increasing
lowest in the center of the cluster. Melting occurs wkiaé) temperatureGg should be zero for the liquid state. This can
increases very sharply with. Because of the finite number be compared with the infinite system where a universal melt-
of particles one has rather a melting region, instead of ang criterion was found in Ref19]: melting occurs when the
well-defined melting temperature. After the melting point, bond-angle correlation factor becom@g~ 0.45, which was
the particles exhibit liquidlike behavior. Figuréay exhibits ~ found to be independent of the functional form of the inter-
three different melting temperatures corresponding to thearticle interaction. For our system the val@g~0.45 is
three different regions. First, region I, i.e., the transitionprobably not correct because in our finite syst8gdoes not
region containing the defects, starts to melt, then the outedrop to zero atT,.;, but is smeared out aroun®e;.
most two rings melt, and finally the hexagonal region meltsTherefore, the midpoinGg~0.45/2~0.225 is expected to
Following Ref.[32], we can define a melting temperature atdescribe better the melting temperature. This leads to
the point where(u2)~0.10, which results in the melting Te/To=0.0136, which is similar to the resule;/To
temperatured e/ To=0.0115, 0.0125, and 0.0138 for the =0.0138 obtained from the radial displacement criterion.
defect region, the outer rings, and the center region, respec- In contrast to bulk systems, the melting scenario of small
tively. laterally confined 2D systems was found ear]it] to be a

In order to investigate the melting in the defect region intwo-step process. Upon increasing the temperature, the first
further detail, we consider two new small regions as shownntershell rotation becomes possible where orientational or-
in the inset of Fig. ®). One region is around the defect, the der between adjacent shells is lost while retaining their inter-
other does not contain a defect and is situated between twual order and the shell structure. At even higher tempera-
defect regions. FON=291, each of the two regions con- tures, the growth of thermal fluctuations leads to radial
tains, respectively, eight and seven particles. In Fig),the  diffusion between the shells, which finally destroys the posi-

021608-6



TOPOLOGICAL DEFECTS AND NONHOMOGENEOS . . . PHYSICAL REVIEW E 67, 021608 (2003

tional order. To characterize the relative angular intrashell VI. CONCLUSION
and the relative angular intershell, we use the functions as
defined in Ref[11]. The relative angular intrashell square di
deviation

The configurational and melting properties of large two-
mensional clusters of charged classical particles interacting
with each other via the Coulomb potential were investigated

1 Mr through the Monte Carlo simulation technique. For the

2\ _ 2 21/,,2 round-state configuration, a hexagonal Wigner lattice is

(Ua) Ng .21 (i e~ (eimei) oo (8 ?ormed in the centr%l area while on t%e bordergof the cluster,

the particles are arranged in rings. In the transition region
and the relative angular intershell square deviation between them, defects appear as groups of dislocations and
L disclinations at the six corners of the hexagonal-shaped inner
domain. Many different arrangements and types of defects

(uzy)= N ;1 [((ei=@i)®)~(¢i— i)’V ¢G5, (6) are possible yas metastable %onfigurations yvF\)/ith a slightly

higher energy. The particle motion is found to be strongly
wherei, indicates the nearest-particle from the same shellfélated to the local topological structure. Our results clearly
while i, refers to the nearest-neighbor shetb=27/Ng,  Show that the melting of the clusters starts near the geometry
where the number in the outermost two rings is the same  induced defects, and that three melting temperatures can be

and equals 42 for ou=291 system. Only the two outer- Obtained:Tme/To=0.0115, 0.0125, and 0.0138 for the de-
most rings have a clear shell structure. Both two outer ringéect region, the outer rings and the center region, respec-

are strongly interlocked, which is a consequence of the 10ively. These values are for the=291 cluster. Taking a
Wigner lattice arrangement of the two rings. From the leftdifferent value forN does not lead to any qualitative differ-
inset of Fig. 7c), one can see that the inner ring will melt €nces, it only influences slightly the values for the three
before the outermost ring. We find that the result(iof,) of ~ Melting temperatures.
the inner ring is almost the same &s2,), which is the
relative angular intershell square deviation. It means that
when the inner ring loses its order, the relative order is lost This work was supported by the Flemish Science Foun-
simultaneously. The outermost ring can still keep its ordedation (FWO-VI), the Belgian Inter-University Attraction
and it will melt at even higher temperature. Comparing thisPoles (IUAP-V), the “Onderzoeksraad van de Universiteit
with Fig. 7(a), we see that the radial and angular displace-Antwerpen”(GOA), and the EU Research Training Network
ments start to increase rapidly at approximately the samen “Surface Electrons on Mesoscopic Structures.” We are
temperature. Thus, for large clusters, intershell rotation willvery grateful to Dr. I. V. Schweigert for helpful discussions.
not occur below the melting temperature, but appears at th8timulating discussions with Professor A. Matulis, Ying-Ju
same temperature when the radial displacements increase.Lai, and M. Milogvic are gratefully acknowledged.
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